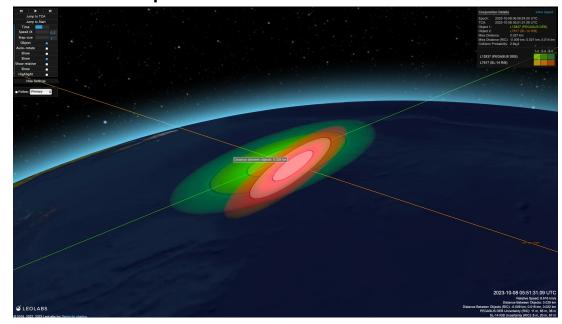


Enhanced orbit prediction for comprehensive SSA in LEO


Dr. Rachit Bhatia Space Safety Analytics & Research Lead Data Analytics Team 2023 Satellite Environment Testbed Exercise
NOAA- SWPC
Boulder, Colorado
26th October 2023

Why enhanced orbit prediction is important?

Operational requirements and associated constraints in LEO environment

- Atmospheric drag is second most significant perturbation in LEO
- Variation in upper atmospheric temperature & density, during solar cycle, impacts orbit prediction capabilities $a_{drag} = \frac{1}{2} \rho C_D \frac{A_{ram}}{m} v_r^2$
- Modeling of neutral density & localized structures is important
- Poor modeling can lead to -:
 - o unrealistic covariance estimation,
 - inaccurate conjunction assessment,
 - o operational limitations,
 - loss of spacecraft, and/or
 - debris generation

Steps taken for enhanced orbit prediction

On-going research & future opportunities

- ✓ Continuous calibration for biases, residuals, and ionospheric error using ILRS satellites
- ✓ Frequent ingestion of solar weather data files
- ✓ Realistic estimates for area to mass ratio
- ✓ Enhanced sequential filtering and process noise handling
- ☐ Move from covariance realism to uncertainty realism
- Improved drag modeling incorporation of semi-analytical methods and better physics-based model, including WAM-IPE
- Integration of operational ephemerides for accurate modeling

Summary

- Accurate orbit prediction requires improved modeling of atmospheric drag
- Knowledge sharing by NOAA-SWPC & other community members is helpful
- More effort is needed in following areas -:
 - ☐ Early warning systems to enable nowcasts and forecasts
 - ☐ Effective models which are easy to integrate
 - Standardized models and best practices
 - Operationally relevant products with incorporated uncertainty estimates

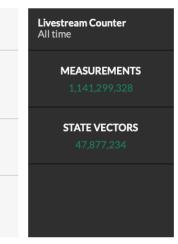
Thank you.

Visit us at https://leolabs.space

Scan the QR code to view on your mobile device, or visit us on YouTube @LeoLabs_space

What does Comprehensive SSA mean?

A life cycle of space safety services


- ✓ Vertically integrated space operations stack powered by cloud data platform
- ✓ Continuous, reliable, and accurate tracking and realistic uncertainty modeling to enable consistent surveillance
- ✓ A suite of holistic risk assessment tools provide traceable & transparent solutions
- ✓ Near-real time alerts with actionable & operationally-relevant insights

LeoLabs System Metrics

Full transparency on LeoLabs system speed, accuracy, and quantity of data

Key Performance Indicators 9/24/2023 - 10/24/2023			Livestream Counte All time
LATENCY TIME - RADAR PASS TO STATE VECTOR 11 MIN	ACCURACY VS TRUTH DATA DIFFERENCE BETWEEN LEGILABS & TRUTH DATA 41 METERS	PRECISION OF STATE VECTORS RMS UNCERTAINTY 20 METERS	MEASUREME 1,141,299,3
RADAR PASSES	MEASUREMENTS	OBJECTS	STATE VECTO 47,877,23
2,545,198 STATE VECTORS 2,417,423	42,361,595 OPERATIONAL EPHEMERIS SCREENINGS 948,619	21,099	

Time from when an object passes over a LeoLabs radar to when its state vector is available on the platform. Median value taken from the past 30

Total: 11 minutes

