Atmospheric Models and Space Weather for Accurate Low-Earth Orbit Satellite Predictions

NOAA SWPC Testbed Experiment

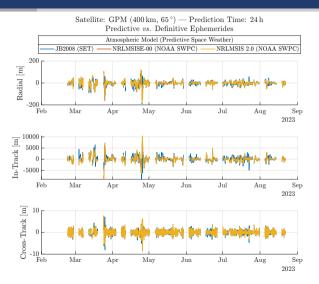
Pol Mesalles-Ripoll October 26, 2023

SPACE NAV

Accurate satellite orbit predictions are key for spaceflight safety

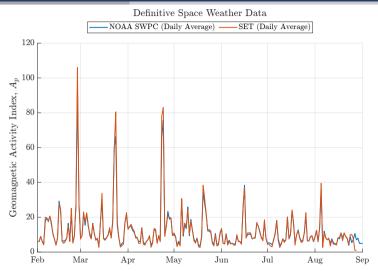
In LEO, drag is the main driver for orbit uncertainty, which is influenced by:

- Unknown physical characteristics of the satellite (effective drag area, CD)
- · Inaccurate and biased atmospheric models, such as:
 - NRLMSISE-00 is perhaps the most commonly used. Uses $F_{10.7}$, $\overline{F}_{10.7}$, and A_p as the main space weather inputs.
 - The updated **NRLMSIS 2.0** released in 2020 focused on altitudes below 200 km, but included changes to the thermosphere. Inputs remained the same.
 - Jacchia-Bowman 2008 is based on Jacchia's diffusion equations, but uses new solar indices F_{10} , S_{10} (EUV), M_{10} (MUV), and Y_{10} (X-ray) and the geomagnetic dT_c .
- Errors in space weather predictions ($F_{10.7}$ and K_p or A_p indices)

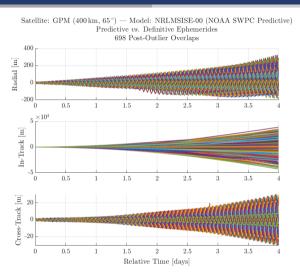

A framework to evaluate the accuracy of atmospheric models

We cannot simply compare orbits propagated with the same initial conditions and different atmosphere models; parameters such as the drag coefficient must also be estimated with the same model before generating new predictions.

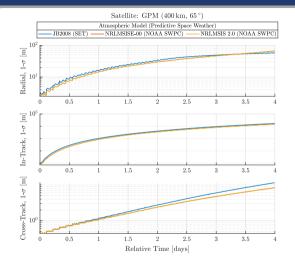
- Generate definitive states by processing GNSS tracking data over an extensive analysis time interval of 6 months.
- Using the last definitive state at the end of each orbit determination arc, we generate a prediction using the solved-for C_D value and the most up-to-date space weather data at the time.
- We overlap definitive and predictive ephemerides to obtain prediction errors at 24, 48, and 72 hours use the results to compute an empirical covariance.



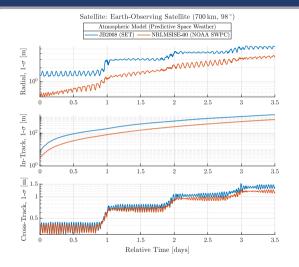
The RIC differences time history shows all models behave similarly...



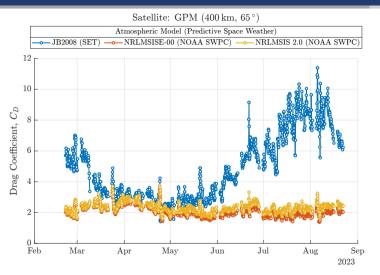
... and prediction error spikes correspond to geomagnetic storm peaks

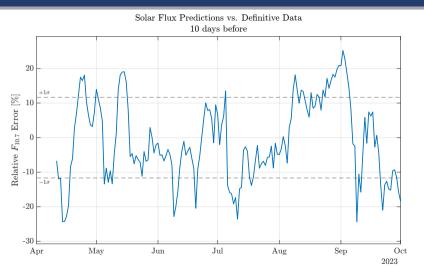


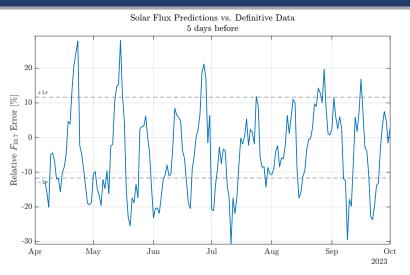
Next, we remove all outliers from the overlaps...

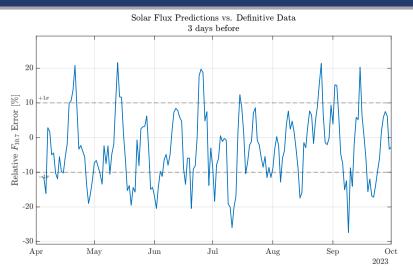

... and compute the empirical covariance for each model (400 km)

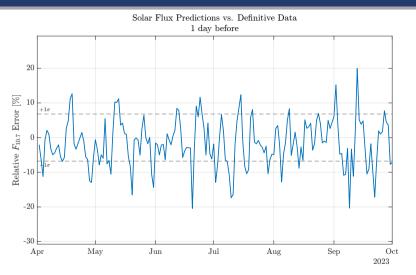
Model	Std. Dev. at 48 h [m] Radial In-Track	
NRLMSISE-00	30.44	3542.65
NRLMSIS 2.0	30.44	3513.67
JB2008	34.48	4060.35

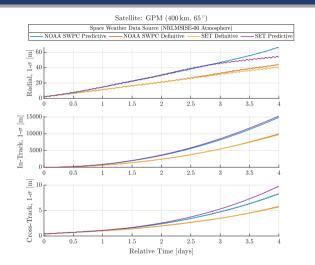

... and compute the empirical covariance for each model (700 km)


Model	Std. Dev. Radial	at 48 h [m] In-Track
NRLMSISE-00	2.26	251.96
JB2008	4.07	560.05


Solved-for C_D time history indicates JB2008 neutral densities are much lower







Using NRLMSISE-00, we compare predictive and definitive space weather sources

Source	Std. Dev. a Radial	it 48 h [m] In-Track	
Predictive Space Weather			
NOAA SWPC SET	30.44 30.77	3542.65 3682.71	
Definitive Space Weather			
NOAA SWPC SET	21.95 21.81	2418.26 2468.13	

30 % of orbit prediction errors are caused by space weather!

It's always space weather.

QUESTIONS?

pol@space-nav.com

